Use of FT-Raman Spectroscopy to Assess 17B-Estradiol/ Progesterone Ethylene Vinyl Acetate based Intravaginal Rings

Jennifer Kiang and David R. Friend, Daré Bioscience, Inc. San Diego CA 92122 USA

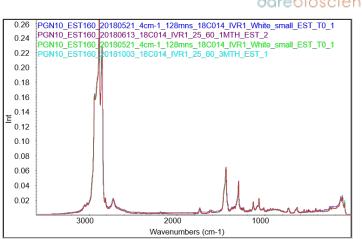
darébioscience

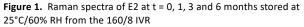
Introduction

Hot melt extrusion (HME), can potentially impact the physical nature of the incorporated drug(s) in controlled release products. In this study, FT-Raman spectroscopy was used to determine the relative amounts of crystalline 17β -estradiol (E2) and progesterone (P) in EVA-based segmented intravaginal rings (IVRs) at the time of manufacture and after storage (1 and 3 months).

Methods

Following HME using a single screw extruder, 5 mm diameter fibers containing E2 (10 wt%) or P (27 wt%) in EVA (28% VA content) were prepared. Fibers (segments) were heat-sealed to create IVRs capable of releasing 80 μ g/d E2 and 4 mg/d P (80/4 IVR) or 160 µg/d and 8 mg P/d (160/8 IVR) through variation in segment length. The appropriate section of the IVRs were cut using a razor blade. Samples for FT-Raman spectroscopy were collected at time of manufacture (t = 0) and at 1, 3 and 6 months following storage at 5°C ambient or 25°C/60% relative humidity (RH). Raman maps were acquired using a x100 objective (lateral resolution: 1-2 µm). Each map covered 200 x 200 µm with 100 x 100 pixels (i.e., 1 pixel represented 2 µm). Each pixel was acquired over 0.05 sec. Spectra were extracted from Raman maps following a cluster analysis to identify different chemical species. Previous work indicated that the amount of dispersed (amorphous) E2 and P was <1% and 5%, respectively. Results


A peak at 547 cm⁻¹ was used to determine the concentration of crystalline E2 in EVA; data from this wavelength was normalized against a peak from EVA at 1738 cm⁻¹. Likewise, a peak at 1662 cm⁻¹ was assigned to crystalline P with normalization to the same EVA peak (1738 cm⁻¹). The normalized peak intensity at 547 cm⁻¹ (E2) at t = 0 was 0.21 from both the 80/4 and the 160/8 IVRs. This value remained at 0.21 or 0.20 over 1.3 and 6 months at both storage conditions. For P, the normalized peak at 1662 cm⁻¹ at t = 0 was 11.8 (80/4 IVR) and 12.1 (160/8 IVR). These values fluctuated slightly at 1, 3 and 6 months storage conditions but with no apparent change. The data are summarized in Table 1. Conclusions/Implications


These data are consistent with additional characterization, and demonstrate no measurable change in the amount crystalline E2 and P in the 80/4 and 160/8 IVRs under the tested storage conditions. These results confirm that FT-Raman can be an effective analytical tool to assess drug stability in IVRs.¹ Reference

1. Bell et al., J. Pharm. Pharmacol., 59: 203-207 (2007)

Acknowledgement

This work was funded by Juniper Pharmaceuticals and Daré Bioscience

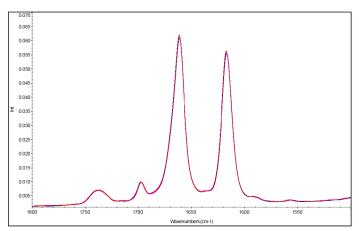


Figure 2. Raman spectra of P at t = 0, 1, 3 and 6 months stored at 25°C/60% RH from the 160/8 IVR

Table 1. Normalized peak intensity for E2 (547 cm⁻¹) and P (1662 cm⁻¹) at t = 0, 1, 3, and 6 months storage at 25°C/65% RH)

	•	. ,		
Time	E2 Peak		P Peak	
	80/4 IVR	160/8 IVR	80/4 IVR	160/8 IVR
T = 0	0.21 ± 0.005^{a}	0.21 ± 0.005	11.8 ± 0.21	12.1 ± 0.21
T = 1 mon	0.20 ± 0.006	0.20 ± 0.006	11.8 ± 0.17	12.1 ± 0.27
T = 3 mon	0.21 ± 0.007	0.21 ± 0.007	11.7 ± 0.17	12.0 ± 0.21
T = 6 mon	0.21 ± 0.007	0.20 ± 0.006	11.9 ± 0.14	11.8 ± 0.14

^aData are means \pm SD (n = 3)